Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Parasitol ; 233: 108205, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34968460

ABSTRACT

Visceral leishmaniasis (VL) is a neglected tropical disease found in tropical and subtropical regions in the world. The therapeutics used for the treatment against disease presents problems, mainly related to drug toxicity, route of administration, high cost and/or by emergence of resistant strains. In this context, the search for alternative antileishmanial candidates is desirable. Recently, a naphthoquinone derivative namely 2-(2,3,4-tri-O-acetyl-6-deoxy-ß-L-galactopyranosyloxy)-1,4-naphthoquinone or Flau-A showed an effective in vitro biological action against Leishmania infantum. In the present study, the efficacy of this naphthoquinone derivative was evaluated in an in vivo infection model. BALB/c mice (n = 12 per group) were infected and later received saline or were treated with empty micelles (B/Mic), free Flau-A or it incorporated in Poloxamer 407-based micelles (Flau-A/Mic). The products were administered subcutaneously in the infected animals, which were then euthanized one (n = 6 per group) and 15 (n = 6 per group) days post-therapy, when immunological and parasitological evaluations were performed. Results showed that animals treated with Flau-A or Flau-A/Mic produced significantly higher levels of antileishmanial IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and IgG2a isotype antibody, when compared to data found in the control (saline and B/Mic) groups; which showed significantly higher levels of parasite-specific IL-4, IL-10 and IgG1 antibody. In addition, animals receiving free Flau-A or Flau-A/Mic presented also significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes, when compared to the controls. A low hepatic and renal toxicity was also found. Overall, Flau-A/Mic showed better immunological and parasitological results, when compared to the use of free molecule. In conclusion, preliminary data suggest that this composition could be considered in future studies as promising therapeutic candidate against VL.


Subject(s)
Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Leishmania infantum/drug effects , Leishmaniasis, Visceral/drug therapy , Naphthoquinones/chemistry , Naphthoquinones/therapeutic use , Animals , Antiprotozoal Agents/pharmacology , Female , Leishmania infantum/genetics , Leishmania infantum/physiology , Mice , Mice, Inbred BALB C , Micelles , Naphthoquinones/pharmacology , Parasite Load , Real-Time Polymerase Chain Reaction , Spleen/parasitology
2.
Parasite ; 28: 38, 2021.
Article in English | MEDLINE | ID: mdl-33851916

ABSTRACT

Current treatments of visceral leishmaniasis face limitations due to drug side effects and/or high cost, along with the emergence of parasite resistance. Novel and low-cost antileishmanial agents are therefore required. We report herein the antileishmanial activity of ß-acetyl-digitoxin (b-AD), a cardenolide isolated from Digitalis lanata leaves, assayed in vitro and in vivo against Leishmania infantum. Results showed direct action of b-AD against parasites, as well as efficacy for the treatment of Leishmania-infected macrophages. In vivo experiments using b-AD-containing Pluronic® F127 polymeric micelles (b-AD/Mic) to treat L. infantum-infected mice showed that this composition reduced the parasite load in distinct organs in more significant levels. It also induced the development of anti-parasite Th1-type immunity, attested by high levels of IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and specific IgG2a antibodies, in addition to low IL-4 and IL-10 contents, along with higher IFN-γ-producing CD4+ and CD8+ T-cell frequency. Furthermore, low toxicity was found in the organs of the treated animals. Comparing the therapeutic effect between the treatments, b-AD/Mic was the most effective in protecting animals against infection, when compared to the other groups including miltefosine used as a drug control. Data found 15 days after treatment were similar to those obtained one day post-therapy. In conclusion, the results obtained suggest that b-AD/Mic is a promising antileishmanial agent and deserves further studies to investigate its potential to treat visceral leishmaniasis.


TITLE: Activité antileishmaniale in vitro et in vivo de la ß-acétyl-digitoxine, un cardénolide de Digitalis lanata potentiellement utile pour traiter la leishmaniose viscérale. ABSTRACT: Les traitements actuels de la leishmaniose viscérale font face à des limitations dues aux effets secondaires des médicaments et/ou à leur coût élevé, ainsi qu'à l'émergence d'une résistance parasitaire. Des agents antileishmaniaux nouveaux et peu coûteux sont donc nécessaires. Nous rapportons ici l'activité antileishmaniale de la ß-acétyl-digitoxine (b-AD), un cardénolide isolé à partir de feuilles de Digitalis lanata, mesurée in vitro et in vivo contre Leishmania infantum. Les résultats ont montré une action directe de la b-AD contre les parasites, ainsi qu'une efficacité pour le traitement des macrophages infectés par Leishmania. Des expériences in vivo utilisant des micelles polymériques Pluronic® F127 contenant de la b-AD (b-AD/Mic) pour traiter des souris infectées par L. infantum ont montré que cette composition réduisait à des niveaux plus significatifs la charge parasitaire dans différents organes, ainsi que le développement d'une immunité antiparasitaire de type Th1, attestée par les taux élevés d'IFN-γ, d'IL-12, de TNF-α, de GM-CSF, de nitrite et d'anticorps IgG2a spécifiques, en plus des faibles taux d'IL-4 et IL-10, ainsi qu'une fréquence plus élevée des cellules T CD4+ and CD8+ productrices d' IFN-γ. De plus, une faible toxicité a été trouvée dans les organes des animaux traités. En comparant l'effet thérapeutique des traitements, b-AD/Mic était le plus efficace pour protéger les animaux contre l'infection, par rapport aux autres groupes comprenant la miltefosine utilisée comme contrôle médicamenteux. Les données trouvées 15 jours après le traitement étaient similaires à celles obtenues un jour après le traitement. En conclusion, les résultats obtenus suggèrent que b-AD/Mic est un agent antileishmanial prometteur et mérite des études supplémentaires pour étudier son potentiel à traiter la leishmaniose viscérale.


Subject(s)
Antiprotozoal Agents , Digitalis , Leishmania infantum , Leishmaniasis, Visceral , Animals , Antiprotozoal Agents/therapeutic use , Cardenolides/therapeutic use , Digitoxin/therapeutic use , Leishmaniasis, Visceral/drug therapy , Mice , Mice, Inbred BALB C
3.
Biomed Pharmacother ; 133: 110936, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33254016

ABSTRACT

Lapachol (LAP) is a natural compound with various biological properties, including anticancer activity. However, its clinical application is limited due to the low aqueous solubility and potential adverse side effects. Nanoemulsions are drug delivery systems that can assist in the administration of hydrophobic drugs, increasing their bioavailability and protecting from degradation. Thus, this study aimed to prepare a LAP-loaded nanoemulsion (NE-LAP), and evaluate its antitumor activity. For this purpose, the nanoemulsion was prepared using a hot homogenization method and characterized morphologically by cryogenic transmission electron microscopy (cryo-TEM). Mean diameter, polydispersity index, and zeta potential was evaluated by DLS, encapsulation efficiency was measured by HPLC. Moreover, the short-term storage stability, the drug release and hemolysis in vitro was determined. Additionally, pharmacokinetic, toxicology and toxicity properties of99mTc-NE-LAP were evaluated in a breast cancer (4T1) tumor model. The cryo-TEM showed spherical globules, and the physicochemical characterization of NE-LAP showed a homogeneous stable nanoemulsion with a mean diameter of ∼170 nm, zeta potential of around -20 mV, and encapsulation greater than 85 %. In vitro studies validated that encapsulation did not impair the cytotoxicity activity of LAP. The nanoemulsion was successfully radiolabeled and 99mTc-NE-LAP showed prolonged blood circulation and tumor affinity was confirmed by tumor-to-muscle ratio. Moreover, NE-LAP showed higher antitumor activity than the free drug and the treatment did not result in any signs of toxicity. Therefore, these findings suggest that NE-LAP can be considered an effective strategy for cancer treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/drug therapy , Nanoparticles , Naphthoquinones/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacokinetics , Breast Neoplasms/pathology , Cell Line, Tumor , Drug Compounding , Drug Liberation , Drug Stability , Emulsions , Female , Humans , Mice, Inbred BALB C , Naphthoquinones/chemistry , Naphthoquinones/pharmacokinetics , Tumor Burden
4.
Parasitol Res ; 120(1): 321-335, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33191446

ABSTRACT

Treatment for visceral leishmaniasis (VL) is hampered mainly by drug toxicity, their high cost, and parasite resistance. Drug development is a long and pricey process, and therefore, drug repositioning may be an alternative worth pursuing. Cardenolides are used to treat cardiac diseases, especially those obtained from Digitalis species. In the present study, cardenolide digitoxigenin (DIGI) obtained from a methanolic extract of Digitalis lanata leaves was tested for its antileishmanial activity against Leishmania infantum species. Results showed that 50% Leishmania and murine macrophage inhibitory concentrations (IC50 and CC50, respectively) were of 6.9 ± 1.5 and 295.3 ± 14.5 µg/mL, respectively. With amphotericin B (AmpB) deoxycholate, used as a control drug, values of 0.13 ± 0.02 and 0.79 ± 0.12 µg/mL, respectively, were observed. Selectivity index (SI) values were of 42.8 and 6.1 for DIGI and AmpB, respectively. Preliminary studies suggested that the mechanism of action for DIGI is to cause alterations in the mitochondrial membrane potential, to increase the levels of reactive oxygen species and induce accumulation of lipid bodies in the parasites. DIGI was incorporated into Pluronic® F127-based polymeric micelles, and the formula (DIGI/Mic) was used to treat L. infantum-infected mice. Miltefosine was used as a control drug. Results showed that animals treated with either miltefosine, DIGI, or DIGI/Mic presented significant reductions in the parasite load in their spleens, livers, bone marrows, and draining lymph nodes, as well as the development of a specific Th1-type response, when compared with the controls. Results obtained 1 day after treatment were corroborated with data corresponding to 15 days after therapy. Importantly, treatment with DIGI/Mic induced better parasitological and immunological responses when compared with miltefosine- and DIGI-treated mice. In conclusion, DIGI/Mic has the potential to be used as a therapeutic agent to protect against L. infantum infection, and it is therefore worth of consideration in future studies addressing VL treatment.


Subject(s)
Antiprotozoal Agents/therapeutic use , Digitoxigenin/therapeutic use , Drug Repositioning/methods , Leishmania infantum/drug effects , Leishmaniasis, Visceral/drug therapy , Poloxamer/therapeutic use , Amphotericin B/therapeutic use , Animals , Deoxycholic Acid/therapeutic use , Drug Combinations , Female , Liver/parasitology , Macrophages/drug effects , Macrophages/parasitology , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred BALB C , Micelles , Parasite Load , Reactive Oxygen Species , Spleen/parasitology
5.
Parasite ; 27: 29, 2020.
Article in English | MEDLINE | ID: mdl-32351209

ABSTRACT

A clioquinol (ICHQ)-containing Pluronic® F127 polymeric micelle system (ICHQ/Mic) was recently shown to be effective against Leishmania amazonensis infection in a murine model. In the present study, ICHQ/Mic was tested against L. infantum infection. BALB/c mice (n = 12 per group) were infected with L. infantum stationary promastigotes through subcutaneous injection and, 45 days after challenge, received saline or were treated via the subcutaneous route with empty micelles, ICHQ or ICHQ/Mic. In addition, animals were treated with miltefosine by the oral route, as a drug control. Half of the animals were euthanized 1 and 15 days after treatment, aiming to evaluate two endpoints after therapy, when parasitological and immunological parameters were investigated. Results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significantly higher anti-parasite IFN-γ, IL-12, GM-CSF, nitrite and IgG2a isotype antibody levels, which were associated with low IL-4 and IL-10 production. In addition, a higher frequency of IFN-γ and TNF-α-producing CD4+ and CD8+ T-cells was found in these animals. The parasite load was evaluated in distinct organs, and results showed that the treatment using miltefosine, ICHQ or ICHQ/Mic induced significant reductions in organic parasitism in the treated and infected mice. A comparison between the treatments suggested that ICHQ/Mic was the most effective in inducing a highly polarized Th1-type response, as well as reducing the parasite load in significant levels in the treated and infected animals. Data obtained 15 days after treatment suggested maintenance of the immunological and parasitological responses. In conclusion, ICHQ/Mic could be considered in future studies for the treatment of visceral leishmaniasis.


TITLE: Un système à micelles polymériques Pluronic® F127 contenant du clioquinol est efficace pour le traitement de la leishmaniose viscérale dans un modèle murin. ABSTRACT: Un système à micelles polymériques Pluronic® F127 (ICHQ/Mic) contenant du clioquinol (ICHQ) s'est récemment révélé efficace contre l'infection à Leishmania amazonensis dans un modèle murin. Dans la présente étude, l'ICHQ/Mic a été testé contre l'infection à L. infantum. Les souris BALB/c (n = 12 par groupe) ont été infectées par des promastigotes stationnaires de L. infantum par injection sous-cutanée et ont reçu 45 jours après l'épreuve une solution saline ou ont été traitées par voie sous-cutanée avec des micelles vides, ICHQ ou ICHQ/Mic. De plus, les animaux ont été traités avec de la miltefosine par voie orale, comme contrôle médicamenteux. La moitié des animaux ont été euthanasiés 1 et 15 jours après le traitement, dans le but de mesurer deux critères d'évaluation après la thérapie, lorsque les paramètres parasitologiques et immunologiques ont été étudiés. Les résultats ont montré que le traitement par miltefosine, ICHQ ou ICHQ/Mic induisait des niveaux d'anticorps anti-parasite IFN-γ, IL-12, GM-CSF, nitrite et IgG2a significativement plus élevés, associés à de faibles productions d'IL-4 et IL-10. De plus, une fréquence plus élevée de cellules T CD4+ et CD8+ produisant de l'IFN-γ and TNF-α a été trouvée chez ces animaux. La charge parasitaire a été évaluée dans des organes distincts et les résultats ont montré que le traitement utilisant la miltefosine, ICHQ ou ICHQ/Mic induisait des réductions significatives du parasitisme des organes chez les souris traitées et infectées. Une comparaison entre les traitements a suggéré qu'ICHQ/Mic était le plus efficace pour induire une réponse de type Th1 polarisée, ainsi que pour réduire la charge parasitaire à des niveaux significatifs chez les animaux traités et infectés. Les données obtenues 15 jours après le traitement suggèrent le maintien des réponses immunologiques et parasitologiques. En conclusion, ICHQ/Mic pourrait être envisagé dans de futures études pour le traitement contre la leishmaniose viscérale.


Subject(s)
Clioquinol/therapeutic use , Leishmaniasis, Visceral/drug therapy , Micelles , Poloxamer/chemistry , Animals , Antibodies, Protozoan/blood , Clioquinol/chemistry , Cytokines/immunology , Disease Models, Animal , Drug Delivery Systems , Female , Leishmania infantum , Mice , Mice, Inbred BALB C , Parasite Load , Poloxamer/therapeutic use , Th1 Cells/immunology
6.
Bioorg Med Chem Lett ; 30(2): 126817, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31810778

ABSTRACT

Breast cancer is the most incident and mortal cancer type in women, with an estimated 2 million new cases expected by 2020 worldwide, with 600,000 deaths. As not all breast cancer types respond to the anti-hormonal therapy, the development of new antineoplastic drugs is necessary. Lawsone (2-hydroxy-1,4-naphtoquinone) is a natural bioactive naphtoquinone displaying a range of activities, with dozens of derivatives described in the literature, including some glycosides possessing antitumor activity. Here, a series of glycosides of lawsone are reported for the first time and all compounds displayed good activity against the SKBR-3 cell line, with IC50 below 10 µM. The most promising derivative was the glycosyl triazole derived from peracetylated d-glucose (11), which showed better cytotoxicity against SKBR-3 (IC50 = 0.78 µM), being the most selective toward this tumoral cell (SI > 20). All compounds described in this work were more active than lawsone, indicating the importance of the carbohydrate and glycosyl triazole moiety for activity.


Subject(s)
Breast Neoplasms/drug therapy , Glycosides/chemical synthesis , Glycosides/therapeutic use , Naphthoquinones/chemical synthesis , Naphthoquinones/therapeutic use , Female , Humans , Molecular Structure , Structure-Activity Relationship
7.
Biomed Pharmacother ; 109: 779-787, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30551531

ABSTRACT

New therapeutic strategies against leishmaniasis are desirable, since the treatment against disease presents problems, such as the toxicity, high cost and/or parasite resistance. As consequence, new antileishmanial compounds are necessary to be identified, as presenting high activity against Leishmania parasites, but low toxicity in mammalian hosts. Flau-A is a naphthoquinone derivative recently showed to presents an in vitro effective action against Leishmania amazonensis and L. infantum species. In the present work, the in vivo efficacy of Flau-A, which was incorporated into a Poloxamer 407-based micelle system, was evaluated in a murine model against L. amazonensis infection. Amphotericin B (AmB) and Ambisome® were used as controls. The animals were infected and later treated with the compounds. Thirty days after the treatment, parasitological and immunological parameters were evaluated. Results showed that AmB, Ambisome®, Flau-A or Flau-A/M-treated animals presented significantly lower average lesion diameter and parasite burden in tissue and organs evaluated, when compared to the control (saline and micelle) groups. Flau-A or Flau-A/M-treated mice were those presenting the most significant reductions in the parasite burden, when compared to the others. These animals developed also a more polarized antileishmanial Th1 immune response, which was based on significantly higher levels of IFN-γ, IL-12, TNF-α, GM-CSF, and parasite-specific IgG2a isotype; associated with low levels of IL-4, IL-10, and IgG1 antibody. The absence of toxicity was found in these animals, although mice receiving AmB have showed high levels of renal and hepatic damage markers. In conclusion, results suggested that the Flau-A/M compound may be considered as a possible therapeutic target to be evaluated against human leishmaniasis.


Subject(s)
Antiprotozoal Agents/therapeutic use , Leishmania/drug effects , Leishmaniasis/drug therapy , Micelles , Naphthoquinones/therapeutic use , Poloxamer/therapeutic use , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacokinetics , Excipients/chemistry , Excipients/pharmacokinetics , Excipients/therapeutic use , Female , Leishmania/metabolism , Leishmaniasis/metabolism , Mice , Mice, Inbred BALB C , Naphthoquinones/chemistry , Naphthoquinones/pharmacokinetics , Poloxamer/chemistry , Poloxamer/pharmacokinetics , Treatment Outcome
8.
Parasitol Int ; 68(1): 63-72, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30339837

ABSTRACT

Clioquinol (5-chloro-7-iodoquinolin-8-ol or ICHQ) was recently showed to presents an in vitro effective antileishmanial action, causing changes in membrane permeability, mitochondrial functionality, and parasite morphology. In the present study, ICHQ was incorporated into a Poloxamer 407-based polymeric micelles system (ICHQ/M), and its antileishmanial activity was in vivo evaluated in L. amazonensis-infected BALB/c mice. Amphotericin B (AmpB) and its liposomal formulation (Ambisome®) were used as controls. Parasitological and immunological evaluations were performed 30 days after the treatment. Results indicated more significant reductions in the average lesion diameter and parasite burden in ICHQ or ICHQ/M-treated mice, which were associated with the development of a polarized Th1 immune response, based on production of high levels of IFN-γ, IL-12, TNF-α, GM-CSF, and antileishmanial IgG2a antibody. Control groups´ mice produced high levels of IL-4, IL-10, and IgG1 isotype antibody. No organic toxicity was found by using ICHQ or ICHQ/M to treat the animals, although those receiving AmpB and Ambisome® have presented higher levels of renal and hepatic damage markers. In conclusion, results suggested that the ICHQ/M composition can be considered as an antileishmanial candidate to be tested against human leishmaniasis.


Subject(s)
Antiprotozoal Agents/immunology , Antiprotozoal Agents/therapeutic use , Clioquinol/immunology , Clioquinol/therapeutic use , Leishmania mexicana/drug effects , Leishmaniasis, Visceral/drug therapy , Poloxamer/administration & dosage , Amphotericin B/administration & dosage , Amphotericin B/therapeutic use , Amphotericin B/toxicity , Animals , Antibodies, Protozoan/blood , Antigens, Protozoan/administration & dosage , Antigens, Protozoan/immunology , Antigens, Protozoan/therapeutic use , Antiprotozoal Agents/administration & dosage , Antiprotozoal Agents/toxicity , Clioquinol/administration & dosage , Cytokines/biosynthesis , Cytokines/immunology , Drug Delivery Systems/methods , Humans , Immunoglobulin G/blood , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Leishmania mexicana/growth & development , Leishmaniasis, Visceral/immunology , Mice , Mice, Inbred BALB C , Micelles , Parasite Load , Poloxamer/chemistry , Th1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...